Mechanical Properties and Microstructures of Ni20Cr Micro-wires with Abnormal Plastic Deformation

Author:

Zhou Xiuwen12,Liu Xudong2,Qi Yidong23,Wu Weidong12

Affiliation:

1. Institute of Atomic and Molecular Physics, Sichuan University, Chengdu610065, China

2. Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang621900, China

3. State Key Laboratory Cultivation Base for Nonmetal Composites and Functional Materials, Southwest University of Science and Technology, Mianyang621010, China

Abstract

AbstractNi80Cr20 (Ni20Cr, wt%) micro-wires were fabricated by the cold-drawing method with single die. Abnormal engineering strains were approximately 17.3–46.6 % for each pass. The relationship between mechanical properties and microstructures of Ni20Cr micro-wires were investigated under different engineering strains and annealing conditions. Experiment results indicate that the as-drawn NiCr micro-wires present obviously brittle fractures. The ultimate tensile strength (UTS) significantly increases from 781 to 1,147 MPa and the elongation decreases from 17.2 % to 1 % with engineering strains increasing. The deformed microstructures of Ni20Cr micro-wire were analyzed in detail including two-phase (solid solution/amorphous phase), edge dislocations and twins. With the annealing temperature increasing, specimens had experienced three stages and their mechanical properties were improved. After annealing at 890 °C (with 6.5 g stress) for 7.3 s in N2, the Ni20Cr micro-wires benefited for the second drawing pass. The results are very importance in fabricating Ni20Cr micro-wire with the diameter from 25 to 10 μm.

Funder

National Natural Science Foundation of China

Publisher

Walter de Gruyter GmbH

Subject

Physical and Theoretical Chemistry,Mechanics of Materials,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3