In Situ Study of the Microstructural Evolution of Nickel-Based Alloy with High Proportional Twin Boundaries Obtained by High-Temperature Annealing

Author:

Zhang Chao1,Sun Ming1,Ya Ruhan1,Li Lulu1,Cui Jingyi2,Li Zhipeng1,Tian Wenhuai1

Affiliation:

1. School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China

2. State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China

Abstract

In this paper, we report an in situ study regarding the microstructural evolution of a nickel-based alloy with high proportional twin boundaries by using electron backscatter diffraction techniques combined with the uniaxial tensile test. The study mainly focuses on the evolution of substructure, geometrically necessary dislocation, multiple types of grain boundaries (especially twin boundaries), and grain orientation. The results show that the Cr20Ni80 alloy can be obtained with up to 73% twin boundaries by annealing at 1100 °C for 30 min. During this deformation, dislocations preferentially accumulate near the twin boundary, and the strain also localizes at the twin boundary. With the increasing strain, dislocation interaction with grain boundaries leads to a decreasing trend of twin boundaries. However, when the strain is 0.024, the twin boundary is found to increase slightly. Meanwhile, the grain orientation gradually rotates to a stable direction and forms a Copper, S texture, and α-fiber <110>. Above all, during this deformation process, the alloy is deformed mainly by two deformation mechanisms: mechanical twinning and dislocation slip.

Funder

The National Key Research and Development Program of China

Publisher

MDPI AG

Subject

General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3