Abstract
Abstract
Monte Carlo simulations have been utilized to make a comparative study between diffusion approximation (DA) and the Gillespie algorithm and its dependence on population in the information diffusion model.
Diffusion approximation is one of the widely used approximation methods which have been applied in queuing systems, biological systems and other fields.
The Gillespie algorithm, on the other hand, is used for simulating stochastic systems.
In this article, the validity of diffusion approximation has been studied in relation to the Gillespie algorithm for varying population sizes.
It is found that diffusion approximation results in large fluctuations which render forecasting unreliable particularly for a small population.
The relative fluctuations in relation to diffusion approximation, as well as to the Gillespie algorithm have been analyzed.
To carry out the study, a nonlinear stochastic model of innovation diffusion in a finite population has been considered.
The nonlinearity of the problem necessitates use of approximation methods to understand the dynamics of the system.
A stochastic differential equation (SDE) has been used to model the innovation diffusion process, and corresponding sample paths have been generated using Monte Carlo simulation methods.
Subject
Applied Mathematics,Statistics and Probability
Reference30 articles.
1. Diffusion approximation in turbulent two-particle dispersion;Phys. Rev. E,2013
2. Temporal gillespie algorithm: Fast simulation of contagion processes on time-varying networks;PLoS Comput. Biol.,2015
3. Accurate and fast simulation of channel noise in conductance-based model neurons by diffusion approximation;PLoS Comput. Biol.,2001
4. Stochastic evolution of a non-linear model of diffusion of information;J. Math. Soc.,1980
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献