Effects of Chemical Structure of Silicone Polyethers Used as Fabric Softener Additives on Selected Utility Properties of Cotton Fabric

Author:

Zięba Małgorzata1,Małysa Anna1,Wasilewski Tomasz1,Ogorzałek Marta1

Affiliation:

1. University of Technology and Humanities in Radom , Faculty of Materials Science and Design, Department of Chemistry , Chrobrego 27 Street, 26-600 Radom , Poland tel. +48 (48) 361 75 00, fax. +48 (48) 361 75 98,

Abstract

Abstract The study addressed the effect of the structure of silicone polyethers on selected functional properties of cotton fabric rinsed in conditioners containing the additives under study. Fabric softener formulations containing two comb-structured compounds (PEG/PPG-14/0 Dimethicone and PEG/PPG-20/20 Dimethicone) and one block-structured compound (Bis-PEG/PPG-20/20 Dimethicone) were developed. Cotton fabric rinsed in conditioners containing silicone glycols was not found to be affected by yellowing. However, differences were noted in the softening ability and re-wettability of rinsed fabrics due to diverse structures of the additives used. The most desirable soft hand effect was observed after cotton rinsing in fabric softeners containing the block-structured compound Bis-PEG/PPG-20/20 Dimethicone. In contrast, the highest fabric re-wettability was shown for the conditioner enriched with a comb-structured compound (PEG/PPG-20/20 Dimethicone). The study results demonstrate that the prototypical fabric softeners containing silicone derivatives have a potential to provide quality characteristic required by consumers of this product group.

Publisher

Walter de Gruyter GmbH

Subject

General Materials Science

Reference24 articles.

1. [1] Saraiva S.A., Abdelnur P.V., Catharino R.R., Nunes G., Eberlin M.N. (2009). Fabric softeners: nearly instantaneous characterization and quality control of cationic surfactants by easy ambient sonic-spray ionization mass spectroscopy. Rapid Commun Mass Spectrom, 23, 357-362.

2. [2] Igarashi, T., Morita, N., Okamoto, Y., & Nakamura, K. (2016). Elucidation of Softening Mechanism in Rinse Cycle Fabric Softeners. Part 1: Effect of Hydrogen Bonding. Journal of Surfactants and Detergents, 19(1), 183-192.

3. [3] Murphy, D.S. (2015). Fabric Softener Technology: A Review. Journal of Surfactants and Detergents, 18(2) 199-204.

4. [4] Parvinzedeh M., Hajiraissi R. (2008). Effect of nano and micro emulsion silicone softeners on properties of polyester fibers. Tenside Surf. Det. 45(5), 254-257.

5. [5] Pathiban M., Kumar M.R. (2007). Effect of fabric softener on thermal comfort of cotton and polyester fabrics. Indian Journal of Fibre & Textile Research, 32, 446-452.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3