Preliminary Studies on Conversion of Sugarcane Bagasse into Sustainable Fibers for Apparel Textiles

Author:

Jalalah MohammedORCID,Khaliq ZubairORCID,Ali Zulfiqar,Ahmad Adnan,Qadir Muhammad BilalORCID,Afzal AliORCID,Ashraf Umer,Faisal M.,Alsaiari Mabkhoot,Irfan MuhammadORCID,Alsareii Saeed A.ORCID,Harraz Farid A.ORCID

Abstract

Owing to increased environmental awareness and the implementation of stringent governmental regulations, the demand for the valorization of natural fibers has increased in recent years. Sugarcane bagasse after juice extraction could be a potential source of natural fibers to be used in textile applications. In this paper, sugarcane bagasse is converted to textile fibers. Sugarcane fibers are extracted through alkali and H2O2 treatment with varying concentrations (6, 10, 14) g/L and (8, 12, 16) g/L, respectively. To soften the fibers for textile use, extracted fibers were post-treated with a constant ratio of silicone softener (50 g/L). Treatment of sugarcane fibers with varying concentrations of alkali–H2O2 significantly influenced the fiber surface morphology. Furthermore, an increase in the crystallinity of extracted fibers was observed, whereas a reduction in fiber linear density from 54.82 tex to 45.13 tex as well as moisture regain (6.1% to 5.1%) was observed as the ratio of alkali–H2O2 treatment was increased. A notable improvement in overall mechanical strength was achieved upon alkali–H2O2 treatment, but at a higher concentration (conc.) there was a loss of mechanical strength, and the torsional and flexural rigidity also increased significantly. Based on the results, sugarcane fibers treated with 10 g/L NaOH, 12 g/L H2O2 and 50 g/L silicone softener showed the most optimum results. These sustainable fibers have the potential to be used in textile applications due to their enhanced softness, optimum moisture regain, and better mechanical properties.

Funder

Deanship of Scientific Research at Najran University

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3