Computation of periodic solutions to models of infectious disease dynamics and immune response

Author:

Khristichenko M. Yu.12,Nechepurenko Yu. M.23

Affiliation:

1. Moscow Center for Fundamental and Applied Mathematics at Marchuk Institute of Numerical Mathematics, Russian Academy of Sciences , Moscow , 119333 , Russia

2. Keldysh Institute of Applied Mathematics Russian Academy of Sciences , Moscow , 125047 , Russia

3. Marchuk Institute of Numerical Mathematics, Russian Academy of Sciences , Moscow , 119333 , Russia

Abstract

Abstract The paper is focused on computation of stable periodic solutions to systems of delay differential equations modelling the dynamics of infectious diseases and immune response. The method proposed here is described by an example of the well-known model of dynamics of experimental infection caused by lymphocytic choriomeningitis viruses. It includes the relaxation method for forming an approximate periodic solution, a method for estimating the approximate period of this solution based on the Fourier series expansion, and a Newton-type method for refining the approximate period and periodic solution. The results of numerical experiments are presented and discussed. The proposed method is compared to known ones.

Publisher

Walter de Gruyter GmbH

Subject

Modeling and Simulation,Numerical Analysis

Reference17 articles.

1. G. A. Bocharov, Modelling the dynamics of LCMV infection in mice: conventional and exhaustive CTL responses. J. Theor. Biol. 192 (1998), No. 3, 283–308.

2. K. Engelborghs, T. Luzyanina, K. J. in ’t Hout, D. Roose, Collocation methods for the computation of periodic solutions of delay differential equations. SIAM J. Sci. Comp. 22 (2001), No. 5, 1593–1609.

3. K. Engelborghs, T. Luzyanina, and D. Roose, Numerical bifurcation analysis of delay differential equations. J. Comp. Appl. Math. 125 (2000), No. 1-2, 265–275.

4. K. Engelborghs, T. Luzyanina, and D. Roose, Numerical bifurcation analysis of delay differential equations using DDE-BIFTOOL. ACM Trans. Math. Softw. 28 (2002), No. 1, 1–21.

5. G. E. Forsythe, M. A. Malcolm, and C. B. Moler, Computer Methods for Mathematical Computations. Prentice-Hall, Englewood Cliffs, 1977.

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Bifurcation analysis of multistability and hysteresis in a model of HIV infection;Vavilov Journal of Genetics and Breeding;2023-12-11

2. Numerical study of chronic hepatitis B infection using Marchuk–Petrov model;Journal of Bioinformatics and Computational Biology;2023-03-09

3. Dependence of optimal disturbances on periodic solution phases for time-delay systems;Russian Journal of Numerical Analysis and Mathematical Modelling;2023-03-01

4. Optimal disturbances for periodic solutions of time-delay differential equations;Russian Journal of Numerical Analysis and Mathematical Modelling;2022-08-01

5. Modelling chronic hepatitis B using the Marchuk-Petrov model;Journal of Physics: Conference Series;2021-11-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3