Structural diversity in echinocandin biosynthesis: the impact of oxidation steps and approaches toward an evolutionary explanation

Author:

Hüttel Wolfgang1

Affiliation:

1. Wolfgang Hüttel, Institute of Pharmaceutical Sciences , University of Freiburg , Albertstrasse 25 , 79104 Freiburg , Germany

Abstract

Abstract Echinocandins are an important group of cyclic non-ribosomal peptides with strong antifungal activity produced by filamentous fungi from Aspergillaceae and Leotiomycetes. Their structure is characterized by numerous hydroxylated non-proteinogenic amino acids. Biosynthetic clusters discovered in the last years contain up to six oxygenases, all of which are involved in amino acid modifications. Especially, variations in the oxidation pattern induced by these enzymes account for a remarkable structural diversity among the echinocandins. This review provides an overview of the current knowledge of echinocandin biosynthesis with a special focus on diversity-inducing oxidation steps. The emergence of metabolic diversity is further discussed on the basis of a comprehensive overview of the structurally characterized echinocandins, their producer strains and biosynthetic clusters. For the pneumocandins, echinocandins produced by Glarea lozoyensis, the formation of metabolic diversity in a single organism is analyzed. It is compared to two common models for the evolution of secondary metabolism: the ‘target-based’ approach and the ‘diversity-based’ model. Whereas the early phase of pneumocandin biosynthesis supports the target-based model, the diversity-inducing late steps and most oxidation reactions best fit the diversity-based approach. Moreover, two types of diversity-inducing steps can be distinguished. Although incomplete hydroxylation is a common phenomenon in echinocandin production and secondary metabolite biosynthesis in general, the incorporation of diverse hydroxyprolines at position 6 is apparently a unique feature of pneumocandin biosynthesis, which stands in stark contrast to the strict selectivity found in echinocandin biosynthesis by Aspergillaceae. The example of echinocandin biosynthesis shows that the existing models for the evolution of secondary metabolism can be well applied to parts of the pathway; however, thus far, there is no comprehensive theory that could explain the entire biosynthesis.

Publisher

Walter de Gruyter GmbH

Subject

General Biochemistry, Genetics and Molecular Biology

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3