Research on process optimization and rapid prediction method of thermal vibration stress relief for 2219 aluminum alloy rings

Author:

Chen Shuguang12,Gao Hanjun12,Lin Minghui12,Wu Shaofeng13,Wu Qiong12

Affiliation:

1. State Key Laboratory of Virtual Reality Technology and Systems, School of Mechanical Engineering and Automation, Beihang University , Beijing , 100191 , China

2. Jingdezhen Research Institute of Beihang University , Jingdezhen , 333000 , China

3. Key Laboratory of Advanced Manufacturing Technology, Beijing University of Technology , Beijing , 100124 , China

Abstract

Abstract 2219 aluminum alloy rings are important part of liquid cryogenic rocket fuel tanks. Residual stress is inevitably introduced in the forming process of the rings due to the nonlinear thermomechanical coupling conditions, which will affect its mechanical properties, fatigue properties, corrosion resistance, and dimensional stability. Thermal vibratory stress relief (TVSR) has great potential in reducing residual stress, and process optimization of TVSR is necessary to further improve its application, but it is rarely reported. In this study, process optimization of roll formed 2219 aluminum alloy rings is conducted. The influence of vibration amplitude, vibration time, vibration frequency, heating time, holding time, and cooling time on TVSR treatment are investigated. Results show that the maximum equivalent residual stress of 2219 aluminum alloy rings can be reduced by 93.6% after optimized TVSR treatment. With the increase in vibration time, heating time, holding time, and cooling time, the maximum equivalent stress decreases. However, the increase in the vibration amplitude results in an increase in the maximum equivalent stress. Further, a genetically optimized artificial neural network intelligent optimization algorithm is applied to quickly predict the TVSR effect of 2219 aluminum alloy rings.

Publisher

Walter de Gruyter GmbH

Subject

Condensed Matter Physics,General Materials Science

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3