Experimental investigations of electrodeposited Zn–Ni, Zn–Co, and Ni–Cr–Co–based novel coatings on AA7075 substrate to ameliorate the mechanical, abrasion, morphological, and corrosion properties for automotive applications

Author:

Sundaramali Govindaswamy1,Aiyasamy Jeeva P.1,Karthikeyan Sambantham2,Kandavel Thanjavur K.3,Arulmurugan Balasubramanian4,Rajkumar Sivanraju5,Sharma Shubham67,Li Changhe7,Dwivedi Shashi Prakash8,Kumar Abhinav9,Singh Rajesh1011,Eldin Sayed M.12

Affiliation:

1. School of Mechanical Engineering, Vellore Institute of Technology , 632014, Tamil Nadu , India

2. School of Advanced Sciences, Vellore Institute of Technology , 632014, Tamil Nadu , India

3. School of Mechanical Engineering, SASTRA Deemed to be University, Tirumalaisamudram , Thanjavur 613401, Tamil Nadu , India

4. Department of Mechanical Engineering, KPR Institute of Engineering and Technology, Coimbatore 641407, Tamil Nadu , India

5. Department of Mechanical Engineering, Faculty of Manufacturing, Institute of Technology, Hawassa University , Hawassa , Ethiopia

6. Department of Mechanical Engnieering, University Centre for Research and Development (UCRD), Chandigarh University , Mohali , India

7. School of Mechanical and Automotive Engineering, Qingdao University of Technology , 266520 , Qingdao , China

8. G.L. Bajaj Institute of Technology &; Management , Greater Noida , Gautam Buddha Nagar, U.P. 201310 , India

9. Department of Nuclear and Renewable Energy, Ural Federal University Named After the First President of Russia, Boris Yeltsin , 19 Mira Street, 620002 , Ekaterinburg , Russia

10. Uttaranchal Institute of Technology, Uttaranchal University , Dehradun 248007 , India

11. Department of Project Management, Universidad Internacional Iberoamericana , Campeche C.P. 24560 , Mexico

12. Faculty of Engineering, Centre for Research, Future University in Egypt , New Cairo 11835 , Egypt

Abstract

Abstract The aluminum (Al) alloy AA7075 is widely used in various industries due to its high strength-to-weight ratio, which is comparable and replaceable to steel in many applications. However, it has poor resistance to wear and corrosion compared to other Al alloys. The conventional pressure die coating with Cr and cadmium has led to premature failure while the load is applied. It is indeed to develop a novel coating method to improve the mechanical, wear, and corrosion properties of AA7075 Al alloy. In the present investigation, the binary and ternary metals such as zinc–nickel (Zn–Ni), zinc–cobalt (Zn–Co), and nickel–chromium–cobalt (Ni–Cr–Co) are electroplated on the substrate material (AA7075). In order to ensure optimal coating adhesion, the surface of the substrate material was pre-treated with laser surface treatment (LST). The mechanical and corrosion studies have been carried out on the uncoated and coated materials. It is observed from the findings that the ternary coating has higher wear resistance than the binary-coated material. The ternary coating has 64% higher resistance in the non-heat-treated status and 67% higher resistance in the heat-treated condition compared to the uncoated specimens. The tensile strength (MPa) of Ni–Cr–Co on AA7075 pressure die casting (PDC) is higher than the other deposits (582.24 of Ni–Cr–Co > 566.07 of Zn–Co > 560.05 of Zn–Ni > 553.64 of uncoated condition). The presence of a crystalline structure with the high alignment of Co and Ni atoms could significantly improve the corrosion resistance of Ni–Cr–Co coatings on AA 7075 PDC substrates when compared to binary coatings. The scanning electron microscopy (SEM) images, X-ray diffraction (XRD), and X-ray photoelectron spectroscopy findings on the coated materials have been corroborated with the analyses on mechanical and corrosion properties. The XRD analysis of the Zn–Ni binary coating has reported that the diffraction peaks of γ-NiZn3 (831), γ -Ni2Zn11 (330), and 631 with 2θ values 38, 43, and 73° are confirming the presence of Zn–Ni binary deposit on AA7075 PDC substrate. The XRD pattern of Zn–Co-coated material has revealed that the presence of three strong peaks such as Zn (110), Co (111), and CoZn (211) and two feeble peaks such as ε-CoZn3 (220) and ε-CoZn3 (301) are clearly visible. The XRD pattern of Ni–Cr–Co ternary coating has exhibited that the Ni–Cr–Co ternary deposit is a solid solution with a body-centered cubic structure due to the formation peaks at lattice plane such as (110), (220), and (210) with a crystal lattice constant of 2.88 A°. The SEM image for both the binary- and ternary-coated materials has exhibited that the deposited surface has displayed many shallow pits due to hitting by progressive particles. The SEM image has illustrated the presence of Zn–Ni atoms with smaller globular structure. The surface morphology of binary Zn–Co coating on the PDC AA7075 substrate has unveiled the evenly distributed dot-like structure and submerged Co particles in the galaxy of Zn atoms. To understand the effectiveness of bonding by laser texturing, cross-section SEM has been carried out which furthermore revealed the effective adhesion of Ni–Cr–Co on AA7075 PDC; this could also be the reason for the enhancement of microhardness, wear, and corrosion resistance of the said coating.

Publisher

Walter de Gruyter GmbH

Subject

Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3