Light-Induced ignition of Carbon Nanotubes and energetic nano-materials: a review on methods and advanced technical solutions for nanoparticles-enriched fuels combustion

Author:

Visconti Paolo1,Primiceri Patrizio1,de Fazio Roberto1,Strafella Luciano1,Ficarella Antonio1,Carlucci Antonio Paolo1

Affiliation:

1. Department of Innovation Engineering , University of Salento , 73100, Lecce , Italy

Abstract

Abstract Aim of the present manuscript is to provide an overview of all possible methods and light source typologies used by the different research groups for obtaining the energetic nano-materials’ photo-ignition, showing the latest progress related to such phenomenon employing, also, alternative radiation sources to the common Xe lamp. In fact, the employment of a different source typology can open new usage prospects respect to those enabled by the Xe lamp, mainly due to its technological limitations. Therefore, several studies are faced to test light sources, such as lasers and LEDs, for igniting the nano-energetic materials (as CNTs mixed with metallic catalyzers, Al / CuO nano-particles, etc); these nano-materials are usefully employed for starting, in volumetric and controlled way, the combustion of air-fuel mixtures inside internal combustion engines, leading to significant benefits to the combustion process also in terms of efficiency, reliability, and emissions of pollutants. Several research works are presented in literature concerning the ignition of liquid / gaseous fuels, without nano-particles, employing laser sources (i.e laser-based plugs in place of the common spark plugs); therefore, an innovative solution is proposed that employs multi-point laser-plugs for inducing the ignition of nano-materials dispersed into the air-fuel mixture inside the cylinder, so further improving the combustion of the fuel in an internal combustion engine.

Publisher

Walter de Gruyter GmbH

Subject

Condensed Matter Physics,General Materials Science

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3