Dynamic characteristics of tailings dam with geotextile tubes under seismic load

Author:

Li Qiaoyan12,Ma Guowei13,Li Ping4,Su Zhandong4

Affiliation:

1. Faculty of Architecture, Civil and Transportation Engineering, Beijing University of Technology , Beijing , 100124 , China

2. Institute of Disaster Prevention , Hebei , 065201 , China

3. School of Civil and Transportation Engineering, Hebei University of Technology , Tianjin , 300401 , China

4. Department of Geological Engineering, Institute of Disaster Prevention , Hebei , 065201 , China

Abstract

Abstract Geotextile tubes are one of the emerging and promising technologies to build fine-grain tailings dams. In this study, shaking table model tests are conducted to evaluate the seismic performance as characterized by horizontal acceleration and displacement of the tailings dam subject to horizontal peak ground accelerations (HPGAs). The test results indicate that the tailings dam is sustainable, whereas the whole dam tends to slide forward. Test results reveal a W-pattern variation of acceleration amplification coefficient (A m) at the same elevation despite different HPGA, whereas A m on the geotextile tubes exhibits minimal changes with increasing HPGA. A m inside the dam is highly variable in terms of the elevation and the specific position. The maximum vertical displacement occurs at the top of the geotextile tubes as the side of the geotextile tubes tilting upward. The highest horizontal displacement is observed in the middle section of the geotextile tubes, resulting in an overall convex deformation pattern. Two reinforcement schemes are proposed accordingly including strengthening the drainage and installing the anti-slide piles. The dynamic behaviors of the tailings dam subject to earthquakes from this study can serve as guidance for seismic design and technology promotion.

Publisher

Walter de Gruyter GmbH

Subject

Condensed Matter Physics,General Materials Science

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3