Adsorption performance of hydrophobic/hydrophilic silica aerogel for low concentration organic pollutant in aqueous solution

Author:

Yi Zhigang,Tang Qiong,Jiang Tao,Cheng Ying

Abstract

Abstract Hydrophobic silica aerogels (SiO2(AG)) was prepared via sol-gel and solvent exchange method under ambient pressure, which could be transformed to hydrophilic after heated under 500C. Heat treatment cannot change its structure. SiO2(AG) samples were the micro-porous structure formed by numerous fine particles and had high specific surface area, pore size and pore volume. The absorption performance of hydrophobic/hydrophilic SiO2(AG) on nitrobenzene, phenol and methylene blue (MB) showed that hydrophobic SiO2(AG) exhibited strong adsorption capacity on slightly soluble organic compounds, while hydrophilic SiO2(AG) was much more effective on adsorbing soluble compounds, which could be analyzed by the hydrophobic and hydrophilic interaction theory between the adsorbent and adsorbate.Hydrophobic/hydrophilic SiO2(AG) adsorption performance for MB is superior to that for phenol, which could be explained via the electrostatic interaction theory.

Publisher

Walter de Gruyter GmbH

Subject

Surfaces, Coatings and Films,Process Chemistry and Technology,Energy Engineering and Power Technology,Biomaterials,Medicine (miscellaneous),Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3