Post-transition state bifurcations gain momentum – current state of the field

Author:

Hare Stephanie R.1,Tantillo Dean J.1

Affiliation:

1. University of California, Davis, 1 Shields Avenue, Davis, CA 95616, USA

Abstract

AbstractThe existence of post-transition state bifurcations on potential energy surfaces for organic and biological reaction mechanisms has been known for decades, but recently, new reports of bifurcations have been occurring at a much higher rate. Beyond simply discovering bifurcations, computational chemists are developing techniques to understand what aspects of molecular structure and vibrations control the product selectivity in systems containing bifurcations. For example, the distribution of products seen in simulations has been found to be extremely sensitive to the local environment of the reacting system (i.e. the presence of a catalyst, enzyme, or explicit solvent molecules). The outlook for the future of this field is discussed, with an eye towards the application of the principles discussed here by experimental chemists to design a reaction setup to efficiently generate desired products.

Publisher

Walter de Gruyter GmbH

Subject

General Chemical Engineering,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3