Bromate anion reduction: novel autocatalytic (EC″) mechanism of electrochemical processes. Its implication for redox flow batteries of high energy and power densities

Author:

Vorotyntsev Mikhail A.,Antipov Anatoly E.,Konev Dmıtry V.

Abstract

Abstract Recent theoretical studies of the bromate electroreduction from strongly acidic solution have been overviewed in view of very high redox-charge and energy densities of this process making it attractive for electric energy sources. Keeping in mind non-electroactivity of the bromate ion the possibility to ensure its rapid transformation via a redox-mediator cycle (EC′ mechanism) is analyzed. Alternative route via the bromine/bromide redox couple and the comproportionation reaction inside the solution phase is considered within the framework of several theoretical approaches based on the conventional Nernst layer model, or on its recently proposed advanced version (Generalized Nernst layer model), on the convective diffusion transport equations. This analysis has revealed that this process corresponds to a novel (EC″) electrochemical mechanism since the transformation of the principal oxidant (bromate) is carried out via autocatalytic redox cycle where the bromate consumption leads to progressive accumulation of the bromine/bromide redox couple catalyzing the process. As a result, even a tracer amount of its component, bromine, in the bulk solution leads under certain conditions to extremely high current densities which may even overcome the diffusion-limited one for bromate, i.e. be well over 1 A/cm2 for concentrated bromate solutions. This analysis allows one to expect that the hydrogen–bromate flow battery may generate very high values of both the current density and specific electric power, over 1 A/cm2 and 1 W/cm2.

Funder

Russian Science Foundation

Publisher

Walter de Gruyter GmbH

Subject

General Chemical Engineering,General Chemistry

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3