A Hydrogen-Bromate Flow Battery as a Rechargeable Chemical Power Source

Author:

Kartashova Natalia V.ORCID,Konev Dmitry V.ORCID,Loktionov Pavel A.ORCID,Glazkov Artem T.ORCID,Goncharova Olga A.,Petrov Mikhail M.ORCID,Antipov Anatoly E.ORCID,Vorotyntsev Mikhail A.ORCID

Abstract

The hydrogen-bromate flow battery represents one of the promising variants for hybrid power sources. Its membrane-electrode assembly (MEA) combines a hydrogen gas diffusion anode and a porous flow-through cathode where bromate reduction takes place from its acidized aqueous solution: BrO3− + 6 H+ + 6 e− = Br− + 3 H2O (*). The process of electric current generation occurs on the basis of the overall reaction: 3 H2 + BrO3− = Br− + 3 H2O (**), which has been studied in previous publications. Until this work, it has been unknown whether this device is able to function as a rechargeable power source. This means that the bromide anion, Br−, should be electrooxidized into the bromate anion, BrO3−, in the course of the charging stage inside the same cell under strongly acidic conditions, while until now this process has only been carried out in neutral or alkaline solutions with specially designed anode materials. In this study, we have demonstrated that processes (*) and (**) can be performed in a cyclic manner, i.e., as a series of charge and discharge stages with the use of MEA: H2, Freidenberg H23C8 Pt-C/GP-IEM 103/Sigracet 39AA, HBr + H2SO4; square cross-section of 4 cm2 surface area, under an alternating galvanostatic mode at a current density of 75 mA/cm2. The coulombic, voltaic and energy efficiencies of the flow battery under a cyclic regime, as well as the absorption spectra of the catholyte, were measured during its operation. The total amount of Br-containing compounds penetrating through the membrane into the anode space was also determined.

Funder

RFBR

Publisher

MDPI AG

Subject

Filtration and Separation,Chemical Engineering (miscellaneous),Process Chemistry and Technology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3