Graphene hydrogel supported palladium nanoparticles as an efficient and reusable heterogeneous catalysts in the transfer hydrogenation of nitroarenes using ammonia borane as a hydrogen source

Author:

Eghbali Paria1,Nişancı Bilal23,Metin Önder12

Affiliation:

1. Department of Chemistry , Faculty of Science , Atatürk University , 25240 Erzurum , Turkey

2. East Anatolian High Technology Application and Research Center (DAYTAM) , 25240 Erzurum , Turkey

3. Program of Food Technology, Narman Vocational Training High School , Narman 25530 , Erzurum , Turkey

Abstract

Abstract Addressed herein is a facile one-pot synthesis of graphene hydrogel (GHJ) supported Pd nanoparticles (NPs), namely Pd-GHJ nanocomposites, via a novel method that comprises the combination of hydrothermal treatment and polyol reduction protocols in water. The structure Pd-GHJ nanocomposites were characterized by TEM, HR-TEM, XRD, XPS, Raman spectroscopy and BET surface area analysis. Then, Pd-GHJ nanocomposites were used as a heterogeneous catalysts in the tandem dehydrogenation of ammonia borane and hydrogenation of nitroarenes (Ar–NO2) to anilines (Ar–NH2) in the water/methanol mixture at room temperature. A variety of Ar–NO2 derivatives (total 9 examples) were successfully converted to the corresponding Ar–NH2 by the help of Pd-GHJ nanocomposites catalyzed tandem reactions with the conversion yields reaching up to 99% in only 20 min reaction time. Moreover, Pd-GHJ nanocomposites were demonstrated to be the reusable catalysts in the tandem reactions by preserving their initial catalytic performance after five consecutive catalytic cycles. It is believed that the presented synthesis protocol for the Pd-GHJ nanocomposites and the catalytic tandem hydrogenation reactions will make a significant contribution to the catalysis and synthetic organic chemistry fields.

Publisher

Walter de Gruyter GmbH

Subject

General Chemical Engineering,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3