A facile preparation of graphene hydrogel-supported bimetallic RuM (M: Co, Ni, Cu) nanoparticles as catalysts in the hydrogen generation from ammonia borane

Author:

Zaier Ibtihel1,Eroglu Zafer2,Metin Önder23

Affiliation:

1. Division of Nanomaterials, Department of Nanoscience and Nanoengineering , Atatürk University , 25240 Erzurum , Türkiye

2. Department of Chemistry, College of Sciences , Koç University , 34450 Istanbul , Türkiye

3. Koç University Surface Science and Technology Center (KUYTAM), Koç University , Istanbul 34450 , Türkiye

Abstract

Abstract The synthesis of ultrafine well-dispersed bimetallic RuM (M: Co, Ni, Cu) nanoparticles (NPs) supported on graphene hydrogel (GH) was accomplished by a novel one-pot wet-chemical protocol that comprised the hydrothermal reduction of the mixture of graphene oxide and metal precursors by ethylene glycol (EG) in a Teflon-coated stainless-steel reactor at 180 °C. In this study, for the first time, we report the synthesis of bimetallic RuM NPs anchored on GH during the hydrothermal production of GH from graphene oxide (GH-RuM) and the catalysis of the yielded GH-Ru in the hydrolysis of ammonia borane (AB). As-synthesized GH-RuM (M: Co, Ni, Cu) nanocatalysts were characterized by using many advanced instrumental techniques including TEM, XRD, XPS, and ICP-MS. The bimetallic catalysts denoted as GH-Ru20Co80, GH-Ru30Ni70 and GH-Ru10Cu90 exhibited much higher catalytic activity compared to their Ru, Co, Ni and Cu monometallic counterparts in the hydrolytic dehydrogenation of AB. The catalytic performance of as-prepared NPs in terms of hydrogen generation rate (HGR) was achieved in the order of RuCo > RuNi > RuCu and the highest HGR calculated for the catalyst GH-Ru20Co80 reached 8911.5 mL H2 gcat −1 min−1 at room temperature with an activation energy of 52.5 kJ mol−1.

Publisher

Walter de Gruyter GmbH

Subject

General Chemical Engineering,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3