Hash functions from superspecial genus-2 curves using Richelot isogenies

Author:

Castryck Wouter1,Decru Thomas1,Smith Benjamin2

Affiliation:

1. imec-COSIC, Department of Electrical Engineering, KU Leuven, France

2. Inria and École Polytechnique, Institut Polytechnique de Paris, Palaiseau, France

Abstract

AbstractIn 2018 Takashima proposed a version of Charles, Goren and Lauter’s hash function using Richelot isogenies, starting from a genus-2 curve that allows for all subsequent arithmetic to be performed over a quadratic finite field 𝔽p2. In 2019 Flynn and Ti pointed out that Takashima’s hash function is insecure due to the existence of small isogeny cycles. We revisit the construction and show that it can be repaired by imposing a simple restriction, which moreover clarifies the security analysis. The runtime of the resulting hash function is dominated by the extraction of 3 square roots for every block of 3 bits of the message, as compared to one square root per bit in the elliptic curve case; however in our setting the extractions can be parallelized and are done in a finite field whose bit size is reduced by a factor 3. Along the way we argue that the full supersingular isogeny graph is the wrong context in which to study higher-dimensional analogues of Charles, Goren and Lauter’s hash function, and advocate the use of the superspecial subgraph, which is the natural framework in which to view Takashima’s 𝔽p2-friendly starting curve.

Publisher

Walter de Gruyter GmbH

Subject

Applied Mathematics,Computational Mathematics,Computer Science Applications

Reference70 articles.

1. “Faster cryptographic hash function from supersingular isogeny graphs.”;Cryptology ePrint Archive, Report 2017/1202,2017

2. “The number of curves of genus two with elliptic differentials,”;Journal für die reine und angewandte Mathematik,1997

3. “Families of Ramanujan graphs and quaternion algebras,”;Groups and symmetries: from Neolithic Scots to John McKay,2009

4. “Cryptographic hash functions from expander graphs,”;Journal of Cryptology,2009

5. “Claw finding algorithms using quantum walk,”;Theoretical Computer Science,2009

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3