Author:
Malygina E. S.,Kutsenko A. V.,Novoselov S. A.,Kolesnikov N. S.,Bakharev A. O.,Khilchuk I. S.,Shaporenko A. S.,Tokareva N. N.
Reference43 articles.
1. E. S. Malygina, N. N. Tokareva, and A. V. Kutsenko, et al., “Post-quantum
cryptosystems: Open problems and solutions. Lattice-based cryptosystems,” Diskretn. Anal.
Issled. Oper. 30 (4), 46–90 (2023) [J. Appl. Ind. Math.
17 (4), 767–790 (2023)].
2. N. T. Courtois, M. Finiasz, and N. Sendrier, “How to achieve a
McEliece-based digital signature scheme,” Adv.
Cryptology—ASIACRYPT’01. Proc. Int. Conf. Theory Appl. Cryptology
(Gold Coast, Australia, December 9–13, 2001), (Springer, Heidelberg, 2001), 157–174 (Lect. Notes
Comput. Sci. 2248).
3. J. Stern, “A new paradigm for public key identification,” IEEE Trans. Inf.
Theory 42 (6), 1757–1768 (1996).
4. A. Childs, D. Jao, and V. Soukharev, “Constructing elliptic curve isogenies in
quantum subexponential time,” J. Math. Cryptology 8 (1),
1–29 (2014).
5. R. J. McEliece, “A public key cryptosystem based on algebraic coding
theory,” DSN Progress Rep. 44 (California Inst.
Technol., Pasadena, CA, 1978), 114–116.