Modeling of tensile index using uncertain data sets

Author:

Bengtsson Fredrik1ORCID,Karlström Anders1,Wik Torsten1

Affiliation:

1. Department of Electrical Engineering , Chalmers University of Technology , Göteborg , Sweden

Abstract

Abstract The objective of this investigation is to analyze and model tensile index. Two approaches are used, one based on training and validation data, while the other novel approach tests models using all possible combinations of data points. This approach is focused on small data sets which have here been obtained from nineteen pulp samples at different refining conditions in a full-scale TMP production line with a CD-76 refiner as a primary stage. From each pulp sample twenty handsheet strips for tensile index measurements were performed. Initially, specific energy and the external variables (dilution water feed rates and plate gaps) are used as predictors in a modeling approach based on an adjusted R 2 {R^{2}} approach. Thereafter, the resulting models are compared with a combination of specific energy and internal variables (primarily consistencies) obtained from temperature measurements inside the refining zones using a soft sensor concept. It is found that specific energy and internal variables as predictors outperform the external variables when estimating tensile index.

Funder

Norges Forskningsråd

Publisher

Walter de Gruyter GmbH

Subject

General Materials Science,Forestry

Reference34 articles.

1. Bajpai, P. Biotechnology for Pulp and Paper Processing. Springer, New York, USA, 2012.

2. Barnett, V., Lewis, T. Outliers in Statistical Data. 3rd edition. J. Wiley & Sons, Chichester, UK, 1994. .

3. Belsley, D.A., Kuh, E., Welsch, R.E. Regression Diagnostics. Identifying Influential Data and Sources of Collinearity. John Wiley & Sons, Hoboken, USA, 1980.

4. Bengtsson, F., Karlström, A., Hill, J., Johansson, L. (2019) Raw data for tensile index estimations from a CD72-refiner. Technical report. Chalmers University of Technology. Available at https://research.chalmers.se/publication/510615.

5. Draper, N.R., Smith, H. Applied Regression Analysis. vol. 326. John Wiley & Sons, New York, USA, 1998.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3