Data-driven soft sensors in pulp refining processes using artificial neural networks

Author:

Karlström Anders1,Hill Jan2,Johansson Lars3

Affiliation:

1. Chalmers University of Technology

2. QualTech Jan Hill AB, SE-282 21 Tyringe, Sweden

3. Woodworks Cluster, Skognæringa Kyst, Skolegata 22, Landbruksklyngen bygg P2, NO-7713 Steinkjer, Norway

Abstract

Pulp refining processes are most often complicated to describe using linear methodologies, and sometimes an artificial neural network (ANN) is a preferable alternative when assimilating non-linear operating data. In this study, an ANN is used to predict pulp properties, such as shives (wide), fiber length, and freeness. Both traditional process variables (external variables) and refining zone variables (internal variables) are necessary to include as model inputs. The estimation of shives (wide) results achieved an R2 (coefficient of determination) of 0.9 (0.7) for the training and (validation) sets. Corresponding measures for fiber length and freeness can be questioned using this methodology. It is shown that the maximum temperature in the flat zone can be modeled using the external variables motor load and production instead of the specific energy. This resulted in an R2 of approximately 0.9 for the training sets, while the R2 for the validation set did not reach an acceptable level – most likely due to inherent non-linearities in the process. Additional results showed that the consistency profile is difficult to estimate properly using an ANN. Instead, a model-driven sensor is preferred to be used. The main results from this study indicate that shives (wide) should be the prime candidate when introducing advanced pulp property control concepts.

Publisher

BioResources

Subject

Waste Management and Disposal,Bioengineering,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3