Robust passivity-based nonlinear controller design for bilateral teleoperation system under variable time delay and variable load disturbance

Author:

Uyulan Caglar1ORCID

Affiliation:

1. Faculty of Engineering and Architecture, Department of Mechanical Engineering, İzmir Katip Çelebi University , İzmir , Turkey

Abstract

Abstract This research focuses on implementing a robust passivity-based nonlinear control method for bilateral/teleoperation systems. The key challenge is addressing communication pathways between the master and slave, control delays, and load disturbances, which can lead to instability and reduced transparency. To tackle these issues, the proposed controller incorporates a second-order super-twisting sliding-mode observer to counteract communication and control delays. A sliding mode assist disturbance observer compensates for load torque variations. The approach aims to ensure stability and transparency by handling time-varying delays. The system model comprises two interconnected direct-drive motors, simulating robotic configurations without a physical robot. The nonlinear controller framework simplifies the complex bilateral control problem, significantly improving stability and transparency performance. Computer simulations with step and sinusoidal inputs demonstrate the effectiveness of the approach, providing a satisfactory level of accuracy and transparency between estimated and actual slave positions, even with varying delays and load variations. The research contributes to control engineering by offering a robust method to enhance bilateral system performance, ensuring stable and transparent communication between the master and slave, particularly suitable for real-time internet-based bilateral control systems.

Publisher

Walter de Gruyter GmbH

Subject

Computer Networks and Communications,General Engineering,Modeling and Simulation,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3