Simulation-driven machine learning for robotics and automation

Author:

El-Shamouty Mohamed1,Kleeberger Kilian1,Lämmle Arik1,Huber Marco23ORCID

Affiliation:

1. Fraunhofer IPA , Nobelstr. 12 , Stuttgart , Germany

2. Center for Cyber Cognitive Intelligence (CCI) , Fraunhofer IPA , Nobelstr. 12 , Stuttgart , Germany

3. Institute of Industrial Manufacturing and Management IFF , University of Stuttgart , Allmandring 35 , Stuttgart , Germany

Abstract

Abstract Mass personalization—a megatrend in industrial manufacturing and production—requires fast adaptations of robotics and automation solutions to continually decreasing lot sizes. In this paper, the challenges of applying robot-based automation in a highly individualized production are highlighted. To face these challenges, a framework is proposed that combines latest machine learning (ML) techniques, like deep learning, with high-end physics simulation environments. ML is used for programming and parameterizing machines for a given production task with minimal human intervention. If the simulation environment realistically captures physical properties like forces or elasticity of the real world, it provides a high-quality data source for ML. In doing so, new tasks are mastered in simulation faster than in real-time, while at the same time existing tasks are executed. The functionality of the simulation-driven ML framework is demonstrated on an industrial use case.

Funder

Ministerium für Wirtschaft, Arbeit und Wohnungsbau Baden-Württemberg

Baden-Württemberg Stiftung

Publisher

Walter de Gruyter GmbH

Subject

Electrical and Electronic Engineering,Instrumentation

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. SnackBot: A modular miniature robot design and simulation;International Journal of Modeling, Simulation, and Scientific Computing;2024-05-23

2. Offline Reinforcement Learning via Sequence Modeling for Vision-Based Robotic Grasping;2023 IEEE 13th International Conference on CYBER Technology in Automation, Control, and Intelligent Systems (CYBER);2023-07-11

3. Non-cooperative Target Localization and Grasp Based on Visual Closed Loop;2023 IEEE 12th Data Driven Control and Learning Systems Conference (DDCLS);2023-05-12

4. Towards Food Handling Robots for Automated Meal Preparation in Healthcare Facilities;Lecture Notes in Computer Science;2023

5. Artificial intelligence, machine learning and deep learning in advanced robotics, a review;Cognitive Robotics;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3