Adaptive, variable resolution grids for bathymetric applications using a quadtree approach

Author:

Toodesh Reenu,Verhagen Sandra

Abstract

Abstract The spatial sampling often used to process and represent bathymetric data are of fixed grid resolution where the least depth value is stored in each grid cell. This results in Digital Elevation Models (DEMs) that are used to depict the underlying features of the seafloor. With the discretion of the user, the resulting DEMs used may either be of coarse resolution or a very fine resolution surface which provides as many details as possible. However, depending on the resolution of the data collected and the variability of the seafloor, the arbitrary user defined grid resolution is not the best option. Hence we address the problem of finding an optimal grid resolution for representing and processing the bathymetric data for the application of bathymetric risk assessment whilst maintaining computational efficiency. Here we adopt the quadtree decomposition approach. In addition, the research suggests the optimal criteria and standard deviation threshold, {\sigma _{th}} values for this particular application. These suggestions are still flexible and can be optimized for this application depending on the end user requirements. Previous studies have focused only on the splitting criteria or the constrained criteria to ensure that there is homogeneous accuracy over the entire dataset. However, an investigation into the threshold selection for the standard deviation, {\sigma _{th}} which describes the variability in the dataset is one of the most important splitting criterion, that is still lacking. Also, a new approach to store the depths in the grid in a time ordered approach for each epoch is shown. By optimizing the criteria for the quadtree decomposition and time series algorithm, the approaches shown in this paper provide the adaptive, accurate DEM which makes optimal use of the available bathymetric data for the Netherlands Continental Shelf (NCS) as the study area. This data preparation step forms the basis for developing a probabilistic approach to assigning hydrographic resurvey frequencies in the NCS.

Funder

Stichting voor de Technische Wetenschappen

Publisher

Walter de Gruyter GmbH

Subject

Earth and Planetary Sciences (miscellaneous),Engineering (miscellaneous),Modeling and Simulation

Reference20 articles.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3