Trajectory Planning Algorithms in Two-Dimensional Environment with Obstacles

Author:

Pshikhopov Viacheslav,Medvedev Mikhail,Kostjukov Vladimir,Houssein Firas,Kadhim Azhar

Abstract

This article proposes algorithms for planning and controlling the movement of a mobile robot in a two-dimensional stationary environment with obstacles. The task is to reduce the length of the planned path, take into account the dynamic constraints of the robot and obtain a smooth trajectory. To take into account the dynamic constraints of the mobile robot, virtual obstacles are added to the map to cover the unfeasible sectors of the movement. This way of accounting for dynamic constraints allows the use of map-oriented methods without increasing their complexity. An improved version of the rapidly exploring random tree algorithm (multi-parent nodes RRT – MPN-RRT) is proposed as a global planning algorithm. Several parent nodes decrease the length of the planned path in comprise with the original one-node version of RRT. The shortest path on the constructed graph is found using the ant colony optimization algorithm. It is shown that the use of two-parent nodes can reduce the average path length for an urban environment with a low building density. To solve the problem of slow convergence of algorithms based on random search and path smoothing, the RRT algorithm is supplemented with a local optimization algorithm. The RRT algorithm searches for a global path, which is smoothed and optimized by an iterative local algorithm. The lower-level control algorithms developed in this article automatically decrease the robot’s velocity when approaching obstacles or turning. The overall efficiency of the developed algorithms is demonstrated by numerical simulation methods using a large number of experiments.

Publisher

SPIIRAS

Subject

Artificial Intelligence,Applied Mathematics,Computational Theory and Mathematics,Computational Mathematics,Computer Networks and Communications,Information Systems

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3