Functional Characterization of Atherosclerosis-Associated Ser128Arg and Leu554Phe E-Selectin Mutations

Author:

Wenzel K.,Stahn R.,Speer A.,Denner K.,Gläser C.,Affeldt M.,Moobed M.,Scheer A.,Baumann G.,Felix S.B.

Abstract

AbstractThe cellular adhesion molecule E-selectin is expressed on activated endothelial cells, and is involved in the process of adherence of blood cells to vessel endothelium in inflammatory events such as atherosclerosis. In a recent study we found a Ser128Arg mutation in the EGF domain as well as a Leu554Phe mutation in the membrane domain of E-selectin. We also established increased frequencies of both mutations among young patients with severe coronary atherosclerosis. In the present study we investigated the influence of these mutations on cell adhesion and on the release of soluble E-selectin. Mutants were created by site-directed mutagenesis and COS cells were transfected with E-selectin, either wild-type or mutant. Antibody-binding studies and cell-adhesion assays were performed on transfected COS cells and on interleukin-1 beta-stimulated HUVECs. Soluble E-selectin in supernatants of wild type and Leu554Phe mutant-transfected COS cells was measured by ELISA. We discovered significant differences in the strength of HL-60 cell adhesion for the Ser128Arg mutant: in comparison with the wild type, the strength of adhesion to the mutant was reduced on transfected COS cells (P < 0.01) as well as on stimulated HUVECs (P < 0.01). Significantly diminished release of soluble E-selectin was detected for the Leu554Phe membrane domain mutant, in comparison with the wild type. In summary, the mutations studied here influence the E-selectin functionin vitroand may be considered as one of the risk factors involved in the complex pathogenesis of atherosclerosis.

Publisher

Walter de Gruyter GmbH

Subject

Clinical Biochemistry,Molecular Biology,Biochemistry

Cited by 42 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3