Feature fusion to increase the robustness of machine learners in industrial environments

Author:

Holst Christoph-Alexander1,Lohweg Volker1

Affiliation:

1. inIT – Institute Industrial IT , Technische Hochschule Ostwestfalen-Lippe , Campusallee 6 , Lemgo , Germany

Abstract

Abstract Industrial applications put special demands on machine learning algorithms. Noisy data, outliers, and sensor faults present an immense challenge for learners. A considerable part of machine learning research focuses on the selection of relevant, non-redundant features. This contribution details an approach to group and fuse redundant features prior to learning and classification. Features are grouped relying on a correlation-based redundancy measure. The fusion of features is guided by determining the majority observation based on possibility distributions. Furthermore, this paper studies the effects of feature fusion on the robustness and performance of classification with a focus on industrial applications. The approach is statistically evaluated on public datasets in comparison to classification on selected features only.

Funder

Bundesministerium für Bildung und Forschung

Publisher

Walter de Gruyter GmbH

Subject

Electrical and Electronic Engineering,Computer Science Applications,Control and Systems Engineering

Reference46 articles.

1. M. A. Aizerman, E. M. Braverman and L. I. Rozonoer. Theoretical foundations of the potential function method in pattern recognition learning. Automation and Remote Control, 25:821–837, 1964.

2. E. Alpaydın. Introduction to Machine Learning. The MIT Press, Cambridge, 2nd edition, 2010.

3. B. M. Ayyub and G. J. Klir. Uncertainty Modeling and Analysis in Engineering and the Sciences. Chapman & Hall/CRC, Boca Raton, FL, 2006.

4. J. Beyerer, J. Jasperneite and O. Sauer. Industrie 4.0. at – Automatisierungstechnik, 63(10), 2015.

5. F. Bocklisch and D. Hausmann. Multidimensional fuzzy pattern classifier sequences for medical diagnostic reasoning. Applied Soft Computing, 66:297–310, 2018.10.1016/j.asoc.2018.02.041

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3