Designing Possibilistic Information Fusion—The Importance of Associativity, Consistency, and Redundancy

Author:

Holst Christoph-AlexanderORCID,Lohweg VolkerORCID

Abstract

One of the main challenges in designing information fusion systems is to decide on the structure and order in which information is aggregated. The key criteria by which topologies are constructed include the associativity of fusion rules as well as the consistency and redundancy of information sources. Fusion topologies regarding these criteria are flexible in design, produce maximal specific information, and are robust against unreliable or defective sources. In this article, an automated data-driven design approach for possibilistic information fusion topologies is detailed that explicitly considers associativity, consistency, and redundancy. The proposed design is intended to handle epistemic uncertainty—that is, to result in robust topologies even in the case of lacking training data. The fusion design approach is evaluated on selected publicly available real-world datasets obtained from technical systems. Epistemic uncertainty is simulated by withholding parts of the training data. It is shown that, in this context, consistency as the sole design criterion results in topologies that are not robust. Including a redundancy metric leads to an improved robustness in the case of epistemic uncertainty.

Funder

German Federal Ministry of Education and Research

Ministerium für Wirtschaft, Innovation, Digitalisierung und Energie des Landes Nordrhein-Westfalen

Publisher

MDPI AG

Subject

General Agricultural and Biological Sciences

Reference87 articles.

1. Handbook of Multisensor Data Fusion: Theory and Practice,2009

2. Uncertainty Modeling and Analysis in Engineering and the Sciences;Ayyub,2006

3. On the use of aggregation operations in information fusion processes

4. Possibility theory in information fusion

5. Main Issues in Belief Revision, Belief Merging and Information Fusion

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3