A computational intelligence based approach for optimized operation scheduling of energy plants

Author:

Mast Johannes1,Rädle Stefan1,Gerlach Joachim1,Bringmann Oliver2

Affiliation:

1. Albstadt-Sigmaringen University , Albstadt , Germany

2. Wilhelm-Schickard-Institute for Computer Science , University of Tübingen , Tübingen , Germany

Abstract

Abstract This paper describes a methodology for optimizing the operation schedule of energy plants, which is exemplarily applied for a combined heat and power plant and a heat pump. The methodology is based on the computational intelligence algorithms Ant Colony Optimization and Simulated Annealing and allows a customized description of the optimization objective. This is demonstrated by several optimization objectives that have been considered, such as the price on the electricity market. The methodology replaces a conventional, guided operating mode of the system with an intelligent, prognostic-based operation planning. In this way, the systems can be operated more economically and/or more sustainably.

Funder

Bundesministerium für Bildung und Forschung

Publisher

Walter de Gruyter GmbH

Subject

Electrical and Electronic Engineering,Computer Science Applications,Control and Systems Engineering

Reference21 articles.

1. European Union: Directive 2004/08/ec of the European parliament and of the council. Official Journal of the European Union 47, 50–60 (2004).

2. European Union: Directive 2009/28/ec of the European parliament and of the council. Official Journal of the European Union 5, 1–47 (2009).

3. Chen, H., Yu, Y., Jiang, X.: Optimal scheduling of combined heat and power units with heat storage for the improvement of wind power integration. In: 8th IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC). pp. 1508–1512. IEEE (2016). 10.1109/APPEEC.2016.7779742.

4. Majić, L., Krželj, I., Delimar, M.: Optimal scheduling of a CHP system with energy storage. In: 36th International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO). pp. 1253–1257. IEEE (2013).

5. Mongibello, L., Graditi, G., Bianco, N., Musto, M., Caliano, M.: Optimal operation of residential micro-CHP systems with thermal storage losses modelling. In: 2014 International Symposium on Power Electronics, Electrical Drives. pp. 1027–1033. IEEE (2014). 10.1109/SPEEDAM.2014.6872090.

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3