A new distributed co-simulation architecture for multi-physics based energy systems integration

Author:

Çakmak Hüseyin1,Erdmann Anselm1,Kyesswa Michael1,Kühnapfel Uwe1,Hagenmeyer Veit1

Affiliation:

1. 150232 Karlsruher Institut für Technologie (KIT) , Institut für Automation und angewandte Informatik (IAI) , Eggenstein-Leopoldshafen , Germany

Abstract

Abstract Simulating energy systems integration scenarios enables a comprehensive consideration of interdependencies between multimodal energy grids. It is an important part of the planning for the redesign of the current energy system infrastructure, which is essential for the foreseen drastic reduction of carbon emissions. In contrast to the complex implementation of monolithic simulation architectures, emerging distributed co-simulation technologies enable the combination of several existing single-domain simulations into one large energy systems integration simulation. Accompanying disadvantages of coupling simulators have to be minimized by an appropriate co-simulation architecture. Hence, in the present paper, a new simulation architecture for energy systems integration co-simulation is introduced, which enables an easy and fast handling of the therefore required simulation setup. The performance of the new distributed co-simulation architecture for energy systems integration is shown by a campus grid scenario with a focus on the effects of power to gas and the reversal process onto the electricity grid. The implemented control strategy enables a successful co-simulation of electrolysis coupled with photovoltaics, a hydrogen storage with a combined heat and power plant and a variable power consumption.

Publisher

Walter de Gruyter GmbH

Subject

Electrical and Electronic Engineering,Computer Science Applications,Control and Systems Engineering

Reference55 articles.

1. J. Rogelj, D. Shindell, K. Jiang, S. Fifita, P. Forster, V. Ginzburg, C. Handa, H. Kheshgi, S. Kobayashi, E. Kriegler, L. Mundaca, R. Séférian, M.V. Vilariño. Mitigation Pathways Compatible with 1.5°C in the Context of Sustainable Development. In: Global Warming of 1.5°C: An IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty; 2018.

2. D. Larcher, J.-M. Tarascon. Towards Greener and More Sustainable Batteries for Electrical Energy Storage. Nature chemistry 2015; 7:19–29.10.1038/nchem.2085

3. M. Jentsch, T. Trost, M. Sterner. Optimal Use of Power-to-Gas Energy Storage Systems in an 85 % Renewable Energy Scenario. Energy Procedia 2014; 46:254–61.10.1016/j.egypro.2014.01.180

4. A. Maroufmashat, M. Fowler. Transition of Future Energy System Infrastructure; through Power-to-Gas Pathways. Energies 2017; 10(8):1089.10.3390/en10081089

5. P. Kohlhepp, V. Hagenmeyer. Technical Potential of Buildings in Germany as Flexible Power-to-Heat Storage for Smart-Grid Operation. Energy Technology 2017; 5(7):1084–104.10.1002/ente.201600655

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3