Predictive factors for lung metastasis in pediatric differentiated thyroid cancer: a clinical prediction study

Author:

Kuang Hou-fang1,Lu Wen-liang2ORCID

Affiliation:

1. Department of General Surgery, Wuhan Children’s Hospital (Wuhan Maternal and Child Healthcare Hospital) , Wuhan , P.R. China

2. Department of Thyroid and Breast Surgery , Maternal and Child Health Hospital of Hubei Province , Wuhan , P.R. China

Abstract

Abstract Objectives The objective of this study was to develop and evaluate the efficacy of a nomogram for predicting lung metastasis in pediatric differentiated thyroid cancer. Methods The SEER database was utilized to collect a dataset consisting of 1,590 patients who were diagnosed between January 2000 and December 2019. This dataset was subsequently utilized for the purpose of constructing a predictive model. The model was constructed utilizing a multivariate logistic regression analysis, incorporating a combination of least absolute shrinkage feature selection and selection operator regression models. The differentiation and calibration of the model were assessed using the C-index, calibration plot, and ROC curve analysis, respectively. Internal validation was performed using a bootstrap validation technique. Results The results of the study revealed that the nomogram incorporated several predictive variables, namely age, T staging, and positive nodes. The C-index had an excellent calibration value of 0.911 (95 % confidence interval: 0.876–0.946), and a notable C-index value of 0.884 was achieved during interval validation. The area under the ROC curve was determined to be 0.890, indicating its practicality and usefulness in this context. Conclusions This study has successfully developed a novel nomogram for predicting lung metastasis in children and adolescent patients diagnosed with thyroid cancer. Clinical decision-making can be enhanced by assessing clinicopathological variables that have a significant predictive value for the probability of lung metastasis in this particular population.

Funder

Maternal and Child Health Hospital Foundation

Publisher

Walter de Gruyter GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3