Stochastic modeling for VRS network-based GNSS RTK with residual interpolation uncertainty

Author:

Jongrujinan Thanate1,Satirapod Chalermchon1

Affiliation:

1. 26683Chulalongkorn University, Survey Engineering Department, Patumwan, Bangkok10330, Thailand

Abstract

AbstractThe key concept of the virtual reference station (VRS) network-based technique is to use the observables of multiple reference stations to generate the network corrections in the form of a virtual reference station at a nearby user’s location. Regarding the expected positioning accuracy, the novice GNSS data processing strategies have been adopted in the server-side functional model for mitigating distance-dependent errors including atmospheric effects and orbital uncertainty in order to generate high-quality virtual reference stations. In addition, the realistic stochastic model also plays an important role to take account of the unmodelled error in the rover-side processing. The results of our previous study revealed that the minimum norm quadratic unbiased estimation (MINQUE) stochastic model procedure can improve baseline component accuracy and integer ambiguity reliability, however, it requires adequate epoch length in a solution to calculate the elements of the variance-covariance matrix. As a result, it may not be suitable for urban environment where the satellite signal interruptions take place frequently, therefore, the ambiguity resolution needs to be resolved within the limited epochs. In order to address this limitation, this study proposed the stochastic model based on using the residual interpolation uncertainty (RIU) as the weighting schemes. This indicator reflects the quality of network corrections for any satellite pair at a specific rover position and can be calculated on the epoch-by-epoch basis. The comparison results with the standard stochastic model indicated that the RIU-weight model produced slightly better positioning accuracy but increased significant level of the ambiguity resolution successful rate.

Publisher

Walter de Gruyter GmbH

Subject

Earth and Planetary Sciences (miscellaneous),Engineering (miscellaneous),Modeling and Simulation

Reference38 articles.

1. An improved ionosphere interpolation algorithm for network RTK in low-latitude regions;GPS Solutions,2018

2. Stochastic Models used in Static GPS Relative Positioning;Survey Review,2006

3. The LAMBDA method for integer ambiguity estimation: implementation aspects;Publications of the Delft Computing Centre, LGR-Series,1995

4. GPS stochastic modelling: signal quality measures and ARMA processes;Springer Science & Business Media,2013

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3