Positional uncertainty of network RTK observations in a modern datum

Author:

Bernstein T.1,Janssen V.2

Affiliation:

1. Spatial Services, NSW Department of Customer Service , Sydney , Australia

2. Spatial Services, NSW Department of Customer Service , Bathurst , Australia

Abstract

Abstract The Geocentric Datum of Australia 2020 (GDA2020) is Australia’s new and much improved national datum. It is based on a single, nationwide least squares network adjustment that rigorously propagates uncertainty. This paper explores three options to include Network Real-Time Kinematic (NRTK) observations and their Positional Uncertainty (PU) in the survey control network of New South Wales (NSW) via the GDA2020 state adjustment. In the first option, PU is empirically estimated based on a dataset of more than 1,500 observations to obtain values that can be uniformly applied to all NRTK observations. In the second option, PU is calculated for each NRTK observation, based on the coordinate quality indicators provided by the Global Navigation Satellite System (GNSS) equipment. Both options continue to treat NRTK observations as point-based position solutions, resulting in poor correlation with surrounding survey control marks. The third option overcomes this issue by utilising the automatically computed GNSS baselines between NRTK observations and their Virtual Reference Station (VRS) to create a connected network that can be adjusted like a static GNSS network. Using a typical urban NRTK survey in Sydney as an example, it is shown that this method offers a rigorous computation of PU, while maintaining the quick and easy nature of NRTK positioning.

Publisher

Walter de Gruyter GmbH

Subject

Applied Mathematics,Earth and Planetary Sciences (miscellaneous),Computers in Earth Sciences,Geophysics,Astronomy and Astrophysics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3