Pressure dependence of the band gap energy for the dilute nitride GaNxAs1−x

Author:

Zhao Chuan-Zhen1,Wei Tong2,Sun Xiao-Dong1,Wang Sha-Sha1,Lu Ke-Qing1

Affiliation:

1. Tianjin Key Laboratory of Optoelectronic Detection Technology and Systems, School of Electronics and Information Engineering, Tianjin Polytechnics University, Tianjin, 300387, China

2. College of Science, Civil Aviation University of China, Tianjin, 300300, China

Abstract

Abstract A model is developed to describe the pressure dependence of the band gap energy for the dilute nitride GaNxAs1–x. It is found that the sublinear pressure dependence of E is due to the coupling interaction between E+ and E. We have also found that GaNxAs1−x needs much larger pressure than GaAs to realize the transition from direct to indirect band gap. It is due to two factors. One is the coupling interaction between the E+ and E. The other is that the energy difference between the X conduction band minimum (CBM) and the G CBM in GaNxAs1−x is larger than that in GaAs. In addition, we explain the phenomenon that the energy difference between the X CBM and the G CBM in GaNxAs1−x is larger than that in GaAs. It is due to the impurity-host interaction.

Publisher

Walter de Gruyter GmbH

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3