Affiliation:
1. Dipartimento di Scienze Fisiche, Informatiche e Matematiche , Università degli Studi di Modena e Reggio Emilia , via Campi 213/b, 41125 Modena , Italy
2. Dipartimento di Matematica e Informatica “U. Dini” , Università di Firenze , Viale Morgagni 67/A, 50134 Firenze , Italy
Abstract
Abstract
Integrals of the Calculus of Variations with
p
,
q
{p,q}
-growth may have not smooth minimizers, not even bounded, for general
p
,
q
{p,q}
exponents. In this paper we consider the scalar case, which contrary to the vector-valued one allows us not to impose structure conditions on the integrand
f
(
x
,
ξ
)
{f(x,\xi)}
with dependence on the modulus of the gradient, i.e.
f
(
x
,
ξ
)
=
g
(
x
,
|
ξ
|
)
{f(x,\xi)=g(x,|\xi|)}
. Without imposing structure conditions, we prove that if
q
p
{\frac{q}{p}}
is sufficiently close to 1, then every minimizer is locally Lipschitz-continuous.
Subject
Applied Mathematics,Analysis
Reference39 articles.
1. A. L. Baisón, A. Clop, R. Giova, J. Orobitg and A. Passarelli di Napoli,
Fractional differentiability for solutions of nonlinear elliptic equations,
Potential Anal. 46 (2017), no. 3, 403–430.
2. P. Baroni, M. Colombo and G. Mingione,
Harnack inequalities for double phase functionals,
Nonlinear Anal. 121 (2015), 206–222.
3. P. Baroni, M. Colombo and G. Mingione,
Nonautonomous functionals, borderline cases and related function classes,
Algebra i Analiz 27 (2015), no. 3, 6–50.
4. P. Baroni, M. Colombo and G. Mingione,
Regularity for general functionals with double phase,
preprint (2017), https://arxiv.org/abs/1708.09147.
5. L. Boccardo and P. Marcellini,
Sulla convergenza delle soluzioni di disequazioni variazionali,
Ann. Mat. Pura Appl. (4) 110 (1976), 137–159.
Cited by
52 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献