Author:
Eleuteri Michela,Passarelli di Napoli Antonia
Abstract
AbstractWe establish the Lipschitz regularity of the a priori bounded local minimizers of integral functionals with non autonomous energy densities satisfying non standard growth conditions under a bound on the gap between the growth and the ellipticity exponent that is reminiscent of the sharp bound already found in [16].
Funder
Università degli Studi di Modena e Reggio Emilia
Publisher
Springer Science and Business Media LLC
Reference35 articles.
1. Adimurthi, K., Tewary, V.: Borderline Lipschitz regularity for bounded minimizers of functionals with $$(p,q)$$-growth ArXiv Preprint
2. Beck, L., Mingione, G.: Lipschitz Bounds and Nonuniform Ellipticity. Comm. Pure Appl. Math. 73(5), 944–1034 (2020)
3. Bildhauer, M., Fuchs, M.: $$\cal{C} ^{1, \alpha }$$ solutions to non-autonomous anisotropic variational problems. Calc. Var. PDE. 24, 309–340 (2005)
4. Bögelein, V., Marcellini, P., Scheven, C.: A variational approach to doubly nonlinear equations, Rend. Lincei, Mat. Appl., 29, 739-772 (2018)
5. Bella, P., Schäffner, M.: Lipschitz bounds for integral functionals with $$(p,q)$$-growth conditions, Adv. Calc. Var., to appear. (2022)