Estimating 3D displacement vectors from line-of-sight observations with application to MIMO-SAR

Author:

Baumann-Ouyang Andreas1ORCID,Butt Jemil Avers12ORCID,Wieser Andreas1ORCID

Affiliation:

1. ETH Zürich, Institute of Geodesy and Photogrammetry , Stefano-Franscini-Platz 5, CH-8093 Zürich , Switzerland

2. Atlas optimization GmbH , Naglerwiesenstrasse 50, CH-8049 Zürich , Switzerland

Abstract

Abstract Displacements in typical monitoring applications occur in 3D but having sensors capable of measuring such 3D deformations with areal coverage is rare. One way could be to combine three or more line-of-sight measurements carried out from different locations at the same time and derive 3D displacement vectors. Automotive Multiple-Input-Multiple-Output Synthetic Aperture Radar (MIMO-SAR) systems are of interest for such monitoring applications as they can acquire line-of-sight displacement measurements with areal coverage and are associated with low cost and high flexibility. In this paper, we present a set of algorithms deriving 3D displacement vectors from line-of-sight displacement measurements while applying spatial and temporal least squares adjustments. We evaluated the algorithms on simulated data and tested them on experimentally acquired MIMO-SAR acquisitions. The results showed that especially spatial parametric and non-parametric least squares adjustments worked very well for typical displacements occurring in geomonitoring and structural monitoring (e.g. tilting, bending, oscillating, etc.). The simulations were confirmed by an experiment, where a corner cube was moved step-wise. The results show that acquisitions of off-the-shelf automotive-grade MIMO-SAR systems can be combined to derive 3D displacement vectors with high accuracy.

Publisher

Walter de Gruyter GmbH

Subject

Earth and Planetary Sciences (miscellaneous),Engineering (miscellaneous),Modeling and Simulation

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3