Improved Doubly Robust Estimation in Marginal Mean Models for Dynamic Regimes

Author:

Sun Hao1,Ertefaie Ashkan2,Lu Xin3,Johnson Brent A.2

Affiliation:

1. Uber Technologies Inc , San Francisco , , California , United States of America

2. Department of Biostatistics and Computational Biology , University of Rochester , Rochester , , New York , United States of America

3. Department of Biostatistics and Programming , Sanofi , Bridgewater , , New Jersey , United States of America

Abstract

Abstract Doubly robust (DR) estimators are an important class of statistics derived from a theory of semiparametric efficiency. They have become a popular tool in causal inference, including applications to dynamic treatment regimes. The doubly robust estimators for the mean response to a dynamic treatment regime may be conceived through the augmented inverse probability weighted (AIPW) estimating function, defined as the sum of the inverse probability weighted (IPW) estimating function and an augmentation term. The IPW estimating function of the causal estimand via marginal structural model is defined as the complete-case score function for those subjects whose treatment sequence is consistent with the dynamic regime in question divided by the probability of observing the treatment sequence given the subject's treatment and covariate histories. The augmentation term is derived by projecting the IPW estimating function onto the nuisance tangent space and has mean-zero under the truth. The IPW estimator of the causal estimand is consistent if (i) the treatment assignment mechanism is correctly modeled and the AIPW estimator is consistent if either (i) is true or (ii) nested functions of intermediate and final outcomes are correctly modeled. Hence, the AIPW estimator is doubly robust and, moreover, the AIPW is semiparametric efficient if both (i) and (ii) are true simultaneously. Unfortunately, DR estimators can be inferior when either (i) or (ii) is true and the other false. In this case, the misspecified parts of the model can have a detrimental effect on the variance of the DR estimator. We propose an improved DR estimator of causal estimand in dynamic treatment regimes through a technique originally developed by [4] which aims to mitigate the ill-effects of model misspecification through a constrained optimization. In addition to solving a doubly robust system of equations, the improved DR estimator simultaneously minimizes the asymptotic variance of the estimator under a correctly specified treatment assignment mechanism but misspecification of intermediate and final outcome models. We illustrate the desirable operating characteristics of the estimator through Monte Carlo studies and apply the methods to data from a randomized study of integrilin therapy for patients undergoing coronary stent implantation. The methods proposed here are new and may be used to further improve personalized medicine, in general.

Publisher

Walter de Gruyter GmbH

Subject

Statistics, Probability and Uncertainty,Statistics and Probability

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3