Improving efficiency and robustness of the doubly robust estimator for a population mean with incomplete data

Author:

Cao Weihua1,Tsiatis Anastasios A.1,Davidian Marie1

Affiliation:

1. Department of Statistics,North Carolina State University,Raleigh, North Carolina 27695-8203,U.S.A.wcao5@ncsu.edutsiatis@stat.ncsu.edudavidian@stat.ncsu.edu

Abstract

Abstract Considerable recent interest has focused on doubly robust estimators for a population mean response in the presence of incomplete data, which involve models for both the propensity score and the regression of outcome on covariates. The usual doubly robust estimator may yield severely biased inferences if neither of these models is correctly specified and can exhibit nonnegligible bias if the estimated propensity score is close to zero for some observations. We propose alternative doubly robust estimators that achieve comparable or improved performance relative to existing methods, even with some estimated propensity scores close to zero.

Funder

U.S. National Institutes of Health

NIH

Publisher

Oxford University Press (OUP)

Subject

Applied Mathematics,Statistics, Probability and Uncertainty,General Agricultural and Biological Sciences,Agricultural and Biological Sciences (miscellaneous),General Mathematics,Statistics and Probability

Reference19 articles.

1. Doubly robust estimation in missing data and causal inference models;Bang;Biometrics,2005

2. Demystifying double robustness: a comparison of alternative strategies for estimating a population mean from incomplete data (with discussion and rejoinder);Kang;Statist. Sci.,2007

3. Stratification and weighting via the propensity score in estimation of causal treatment effects: a comparative study;Lunceford;Statist. Med.,2004

4. Marginal structural models and causal inference in epidemiology;Robins;Epidemio.,2000

5. Estimation of regression coefficients when some regressors are not always observed;Robins;J. Am. Statist. Assoc.,1994

Cited by 209 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3