Effect of land use change on soil organic carbon

Author:

Barančíková Gabriela,Makovníková Jarmila,Halas Ján

Abstract

Abstract The direction of changes and conversion of soil organic carbon (SOC) is in most current ecosystems influenced by human activity. Soil Science and Conservation Research Institute is responsible for monitoring the agricultural soils in a five-year cycle. One part of the soil monitoring involves the determination of the soil organic carbon (SOC) storage. Further, we followed the conversion of arable land on grassland during more than 20 years of monitoring period at some locations where changes in land use occurred. Ten places on basic network and 2 places on key monitoring localities in which arable land have been converted into grassland were identified. About 50 percent of studied soils converted into permanent grassland were Cambisols. The other converted soil types were Luvic Stagnosol, Stagnic Regosol, Mollic Fluvisol, and Stagnic Luvisol. The results showed that after the third monitoring cycle (2002), increase of SOC was observed in all the localities, with the change in land use. Statistical parameter (t-test) confirmed significant differences between the set of average SOC values before and after the land use conversion. The chemical structure of humic acids (HA) isolated from arable soil and permanent grassland indicated increasing of aliphatic carbon content in grassland HA. More aromatic and stabile were HA isolated from arable soils.

Publisher

Walter de Gruyter GmbH

Subject

Horticulture,Plant Science,Soil Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3