Thermodynamic Merger of Fluctuation Theorem and Principle of Least Action: Case of Rayleigh–Taylor Instability

Author:

Mahulikar Shripad P.1,Sengupta Tapan K.2,Sharma Nidhi2,Rastogi Pallavi1

Affiliation:

1. Department of Aerospace Engineering , Indian Institute of Technology Bombay , Powai , Mumbai , India

2. Department of Aerospace Engineering , Indian Institute of Technology Kanpur , Kanpur , India

Abstract

Abstract Entropy fluctuations with time occur in finite-sized time-evolving dissipative systems. There is a need to comprehend the role of these fluctuations on the fluctuations-averaged entropy generation rate, over a large enough observation time interval. In this non-equilibrium thermodynamic investigation, the Fluctuation Theorem (FT) and Principle of Least Action are re-visited to articulate their implications for dissipative systems. The Principle of Maximum Entropy Production (MaxEP: the entropy generation rate of a dissipative system is maximized by paths of least action) is conceptually identified as the Principle of Least Action for dissipative systems. A Thermodynamic Fusion Theorem that merges the FT and the MaxEP is introduced for addressing the role of fluctuations in entropy production. It identifies “entropy fluctuations” as the “least-action path” for maximizing the time-averaged entropy production in a dissipative system. The validity of this introduced theorem is demonstrated for the case of entropy fluctuations in Rayleigh–Taylor flow instability.

Funder

Indian Institute of Technology Kanpur

Publisher

Walter de Gruyter GmbH

Subject

General Physics and Astronomy,General Chemistry

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3