Iodine in excess in the alterations of carbohydrate and lipid metabolic pattern as well as histomorphometric changes in associated organs

Author:

Sarkar Deotima,Chakraborty Arijit,Saha Adipa,Chandra Amar K

Abstract

Abstract Background Iodine is a nonpareil constituent of thyroid hormones (THs) and a prime regulator of thyroid gland functioning. Although essential at recommended levels for the prevention of iodine deficiency disorders (IDDs), exposure to excess iodine reportedly causes hypothyroidism, hyperthyroidism, and several other emerging deleterious impacts. The objective of the present study is to explore the influence of excess iodide exposure on carbohydrate and lipid metabolism along with the histoarchitecture of certain associated organs such as the pancreas, liver, kidney, and skeletal and cardiac muscle because information on those aspects was found to be scanty. Methods Twelve rats were taken, six were fed with iodine through gavage at a dose of 3.5 mg potassium iodide (KI)/100-g body weight, which corresponded to 500 times of the physiological daily dosage of iodide for a period of 60 days, while the other six formed the control group. Results KI-treated rats presented high body weight and urinary iodine with low TH levels, suggesting a primary thyroid dysfunction. There was an increase in blood glucose, cholesterol, triglycerides, low density lipoprotein (LDL), and very low density lipoprotein (VLDL), while high density lipoprotein (HDL) levels decreased. Tissue glycogen content in the liver and skeletal muscle was decreased and was increased in the heart and kidney. Histological sections of the pancreas showed a complete disruption with hardly recognizable histoarchistructure. Treated liver sections displayed the broadened central vein with degenerated hepatocytes, while skeletal muscle sections showed dissolution of muscle fibre cells linked with loss of glycogen from these organs. Histological changes in the heart include features similar to those of a fatty heart with cardiac muscles mutilation, while that of the kidney shows an increase in glomerular tuft size and Bowman’s space expansion with general deterioration. Conclusions It may thus be concluded that excess iodine exposure for a long duration causes the development of a biochemical state of hypothyroidism. The developed hypothyroidism was found responsible for the hyperglycaemic and hypercholestromic status evident by high blood glucose and cholesterol levels and the depletion of glycogen at its storage sites in the liver and skeletal muscle but the extra deposition in the cardiac muscle and kidney; histomicrophotographs showed severe destruction of the pancreatic structure. All these alterations are conducive for the pathogenesis of cardiovascular and kidney diseases.

Publisher

Walter de Gruyter GmbH

Subject

Drug Discovery,Pharmacology,General Medicine,Physiology

Reference104 articles.

1. Glucose metabolism in thyroid disease;Acta Med Scand,1965

2. Myocardial glycophagy – a specific glycogen handling response to metabolic stress is accentuated in the female heart;J Mol Cell Cardiol,2013

3. To study the effect of monosodium glutamate on histomorphometry of cortex of kidney in adult albino rats;Renal Failure,2014

4. Reversible changes in pancreatic islet structure and function produced by elevated blood glucose;Nat Commun,2014

5. The activity of cholesteryl ester transfer protein is decreased in hypothyroidism: a possible contribution to alterations in high-density lipoproteins;Eur J Clin Invest,1990

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3