Affiliation:
1. Department of Electrical Engineering, Stanford University, 348 Via Pueblo, Stanford, CA 94305, USA
Abstract
AbstractMetasurfaces are subwavelength-structured artificial media that can shape and localize electromagnetic waves in unique ways. The inverse design of these devices is a non-convex optimization problem in a high dimensional space, making global optimization a major challenge. We present a new type of population-based global optimization algorithm for metasurfaces that is enabled by the training of a generative neural network. The loss function used for backpropagation depends on the generated pattern layouts, their efficiencies, and efficiency gradients, which are calculated by the adjoint variables method using forward and adjoint electromagnetic simulations. We observe that the distribution of devices generated by the network continuously shifts towards high performance design space regions over the course of optimization. Upon training completion, the best generated devices have efficiencies comparable to or exceeding the best devices designed using standard topology optimization. Our proposed global optimization algorithm can generally apply to other gradient-based optimization problems in optics, mechanics, and electronics.
Subject
Electrical and Electronic Engineering,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials,Biotechnology
Cited by
105 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献