Dynamically tunable second-harmonic generation using hybrid nanostructures incorporating phase-change chalcogenides

Author:

Zhu Muliang1ORCID,Abdollahramezani Sajjad1ORCID,Li Chentao2,Fan Tianren1ORCID,Harutyunyan Hayk2,Adibi Ali1

Affiliation:

1. School of Electrical and Computer Engineering , Georgia Institute of Technology , 778 Atlantic Drive NW , Atlanta , GA 30332 , USA

2. Department of Physics , Emory University , 400 Dowman Drive , Atlanta , GA 30322 , USA

Abstract

Abstract Nonlinear metasurfaces with high conversion efficiencies have been vastly investigated. However, strong dynamic tunability of such devices is limited in conventional passive plasmonic and dielectric material platforms. Germanium antimony telluride (GST) is a promising phase-change chalcogenide for the reconfiguration of metamaterials due to strong nonvolatile changes of the real and imaginary parts of the refraction index through amorphous-crystalline phase change. The orderly structured GST has an even higher potential in tunable second-harmonic generation (SHG) with a non-centrosymmetric crystal structure at the crystalline phase, while the amorphous phase of GST does not exhibit bulk second-order nonlinearity. Here, we experimentally demonstrate SHG switches by actively controlling the crystalline phase of GST for a GST-based hybrid metasurface featuring a gap-surface plasmon resonance, and a quarter-wave asymmetric Fabry–Perot (F–P) cavity incorporating GST. We obtain SHG switches with modulation depths as high as ∼ 20 dB for the wavelengths at the on-state resonance. We also demonstrate the feasibility of multi-level SHG modulation by leveraging three controlled GST phases, i.e., amorphous, semi-crystalline, and crystalline, for the gap-surface plasmon hybrid device, which features stronger light–matter interaction and has higher resonant SHG efficiencies than the asymmetric F–P cavity device at respective GST phases. This research reveals that GST-based dynamic SHG switches can be potentially employed in practical applications, such as microscopy, optical communication, and photonic computing in the nonlinear regime.

Publisher

Walter de Gruyter GmbH

Subject

Electrical and Electronic Engineering,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3