Inverse design of photonic and phononic topological insulators: a review

Author:

Chen Yafeng12ORCID,Lan Zhihao3,Su Zhongqing2,Zhu Jie4

Affiliation:

1. State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body , Hunan University , Changsha , Hunan 410082 , P.R. China

2. Department of Mechanical Engineering , Hong Kong Polytechnic University , Hong Kong SAR , P.R. China

3. Department of Electronic and Electrical Engineering, University College London , London WC1E 7JE , UK

4. School of Physics Science and Engineering , Tongji University , Shanghai 200092 , P.R. China

Abstract

Abstract Photonic and phononic topological insulators (TIs) offer numerous opportunities for manipulating light and sound with high efficiency and resiliency. On the other hand, inverse design methodologies, such as gradient-based approaches, evolutionary approaches, and deep-learning methods, provide a cost-effective strategy for developing photonic and phononic structures with unique features in steering light and sound. Here, we discuss recent advances and achievements in the development of photonic and phononic TIs employing inverse design methodologies, including one-dimensional TIs, TIs based on the quantum spin Hall effect (QSHE) and quantum valley Hall effect (QVHE), and high-order TIs in lattices with diverse symmetries. Several inversely designed photonic and phononic TIs with superior performance are exhibited. In addition, we offer our perspectives on the future of this emerging study field.

Funder

National Natural Science Foundation of China

Research Grants Council of Hong Kong SAR

Hong Kong Scholars Program

Natural Science Foundation of Hunan Province

Fundamental Research Funds for the Central Universities

Publisher

Walter de Gruyter GmbH

Subject

Electrical and Electronic Engineering,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials,Biotechnology

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3