Surface plasmon-cavity hybrid state and its graphene modulation at THz frequencies

Author:

Zhang Yifei1ORCID,Zhang Baoqing1,Li Zhaolin1,Feng Mingming1,Ling Haotian1,Zhang Xijian1,Wang Xiaomu2,Wang Qingpu1,Song Aimin13,Chen Hou-Tong4ORCID

Affiliation:

1. Shandong Technology Center of Nanodevices and Integration, School of Integrated Circuits , Shandong University , Jinan , 250100 , China

2. National Laboratory of Solid State Microstructures, School of Electronic Science and Engineering , Nanjing University , Nanjing , 210023 , China

3. Department of Electrical and Electronic Engineering , University of Manchester , Manchester , M13 9PL , UK

4. Center for Integrated Nanotechnologies, Los Alamos National Laboratory , Los Alamos , NM , 87545 , USA

Abstract

Abstract Fabry–Pérot (F–P) cavity and metal hole array are classic photonic devices. Integrating F–P cavity with holey metal typically enhances interfacial reflection and dampens wave transmission. In this work, a hybrid bound surface state is found within rectangular metal holes on a silicon substrate by merging an extraordinary optical transmission (EOT) mode and a high-order F–P cavity mode both spatially and spectrally. Transmission, Q-factor, and bandwidth can be enhanced significantly with respect to the classical EOT and F–P interference by simply sweeping the cavity length. This state can provide EOT properties and ten times broader EOT bandwidth well below the effective plasma frequency of the periodic metal holes, where the metal holes typically show evanescent properties and do not support EOT in theory. Furthermore, a large modulation range of 25 % and 39 % is demonstrated with various graphene patterns for the transmittance of this hybrid state at 500 and 582 GHz, respectively.

Funder

Key Technology Research and Development Program of Shandong Province

National Key Research and Development Program of China

National Natural Science Foundation of China

Key Region Program of Shandong Province

Center for Integrated Nanotechnologies

Publisher

Walter de Gruyter GmbH

Subject

Electrical and Electronic Engineering,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3