Perspective on 3D vertically-integrated photonic neural networks based on VCSEL arrays

Author:

Gu Min12ORCID,Dong Yibo12,Yu Haoyi12,Luan Haitao12,Zhang Qiming12

Affiliation:

1. Institute of Photonic Chips, University of Shanghai for Science and Technology , Shanghai 200093 China

2. Centre for Artificial-Intelligence Nanophotonics, School of Optical-Electrical and Computer Engineering , University of Shanghai for Science and Technology , Shanghai 200093 China

Abstract

Abstract The rapid development of artificial intelligence has stimulated the interest in the novel designs of photonic neural networks. As three-dimensional (3D) neural networks, the diffractive neural networks (DNNs) relying on the diffractive phenomena of light, has demonstrated their superb performance in the direct parallel processing of two-dimensional (2D) optical data at the speed of light. Despite the outstanding achievements, DNNs utilize centimeter-scale devices to generate the input data passively, making the miniaturization and on-chip integration of DNNs a challenging task. Here, we provide our perspective on utilizing addressable vertical-cavity surface-emitting laser (VCSEL) arrays as a promising data input device and integrated platform to achieve compact, active DNNs for next-generation on-chip vertical-stacked photonic neural networks. Based on the VCSEL array, micron-scale 3D photonic chip with a modulation bandwidth at tens of GHz can be available. The possible future directions and challenges of the 3D photonic chip are analyzed.

Funder

Shanghai Municipal Science and Technology Major Project, Shanghai Frontiers Science Center Program

National Key Research and Development program of China

Science and Technology Commission of Shanghai Municipality

National Natural Science Foundation of China

Publisher

Walter de Gruyter GmbH

Subject

Electrical and Electronic Engineering,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials,Biotechnology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3