Reflection of two-dimensional surface polaritons by metallic nano-plates on atomically thin crystals

Author:

Lee Seojoo1ORCID,Kang Ji-Hun23ORCID

Affiliation:

1. School of Applied and Engineering Physics , Cornell University , Ithaca , NY 14853 , USA

2. Department of Optical Engineering , Kongju National University , Cheonan 31080 , Republic of Korea

3. Department of Future Convergence Engineering , Kongju National University , Cheonan 31080 , Republic of Korea

Abstract

Abstract Owning to their unusual optical properties, such as electrical tunability and strong spatial confinement, two-dimensional surface polaritons (2DSPs) hold great promise for deep sub-wavelength manipulation of light in a reduced low-dimensional space. Control of 2DSPs is possible by using their interaction with a boundary between two media, similar to how light behaves in three-dimensional (3D) space. The understanding of the interaction in the 2D case is still in its early stages, unlike the 3D case, as in-depth investigations are only available in a few cases including the interaction of 2DSPs with structured 2D crystals. Here, we extend the scope of our understanding to the interaction of 2DSPs with metallic nano-plates on 2D crystals, focusing on the reflection of 2DSPs. Through our rigorous model, we reveal that, for strongly confined 2DSPs having much larger momentum than free space photons, the interaction results in almost total internal reflection of 2DSPs as the radiative coupling of the 2DSPs to free space is negligible. We also find that the reflection involves an anomalous phase shift dependent on the thickness of the nano-plate, due to the temporary storing of electromagnetic energy in the evanescent waves induced near the edge of the nano-plate. Our theory predicts that the phase shift saturates to an anomalous value, 0.885π, as the nano-plate becomes thicker. Our work provides a detailed understanding of how to manipulate the 2DSPs by using one of the simplest nanostructures, essential for the further development of nanostructure-integrated low-dimensional devices for polariton optics.

Funder

National Research Foundation of Korea

Publisher

Walter de Gruyter GmbH

Subject

Electrical and Electronic Engineering,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3