Near-zero reflection of all-dielectric structural coloration enabling polarization-sensitive optical encryption with enhanced switchability

Author:

Jung Chunghwan1ORCID,Yang Younghwan2ORCID,Jang Jaehyuck1,Badloe Trevon2,Lee Taejun2,Mun Jungho1,Moon Seong-Won2,Rho Junsuk123ORCID

Affiliation:

1. Department of Chemical Engineering , Pohang University of Science and Technology (POSTECH) , Pohang 37673 , Republic of Korea

2. Department of Mechanical Engineering , Pohang University of Science and Technology (POSTECH) , Pohang 37673 , Republic of Korea

3. National Institute of Nanomaterials Technology (NINT) , Pohang 37673 , Republic of Korea

Abstract

Abstract Structural coloration using metasurfaces has been steadily researched to overcome the limitations of conventional color printing using pigments by improving the resolution, lowering the toxicity, and increasing the durability. Many metasurfaces have been demonstrated for dynamic structural coloration to convert images at the visible spectrum. However, the previous works cannot reach near-zero scattering when colors are turned-off, preventing it from being cryptographic applications. Herein, we propose a completely on/off switchable structural coloration with polarization-sensitive metasurfaces, enabling full-colored images to be displayed and hidden through the control of the polarization of incident light. It is confirmed that the nanostructure exhibits the polarization-dependent magnetic field distributions, and near-zero scattering is realized when the polarization of incident light is perpendicular to the long axis of the nanofins. Also, the metasurfaces are made up of triple-nanofin structures whose lengths affect locations of resonance peaks, resulting in full-color spectrum coverages. With such advantages, a QR code image, a two-color object image, and an overlapped dual-portrait image are obtained with the metasurfaces. Such demonstrations will provide potential applications in the fields of high-security information encryption, security tag, multichannel imaging, and dynamic displays.

Funder

Hyundai Motor Group

Samsung Research Funding & Incubation Center for Future Technology

National Research Foundation of Korea

Publisher

Walter de Gruyter GmbH

Subject

Electrical and Electronic Engineering,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials,Biotechnology

Cited by 63 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3