Origin of dispersive line shapes in plasmon-enhanced stimulated Raman scattering microscopy

Author:

Zong Cheng1,Cheng Ji-Xin1234

Affiliation:

1. Department of Electrical and Computer Engineering, Boston University, Boston, MA02215, USA

2. Department of Biomedical Engineering, Boston University, Boston, MA02215, USA

3. Photonics Center, Boston University, Boston, MA02215, USA

4. Department of Chemistry, Boston University, Boston, MA02215, USA

Abstract

AbstractPlasmon-enhanced stimulated Raman scattering (PESRS) microscopy has been recently developed to reach single-molecule detection limit. Unlike conventional stimulated Raman spectra, dispersive-like vibrational line shapes were observed in PESRS. Here, we propose a theoretical model together with a phasor diagram to explain the observed dispersive-like line shapes reported in our previous study. We show that the local enhanced electromagnetic field induced by the plasmonic nanostructure interferes with the molecular dipole-induced field, resulting in the dispersive profiles of PESRS. The exact shape of the profile depends on the phase difference between the plasmonic field and the molecular dipole field. We compared plasmon-enhanced stimulated Raman loss (PESRL) and plasmon-enhanced stimulated Raman gain (PESRG) signals under the same pump and Stokes laser wavelength. The PESRL and PESRG signals exhibit similar signal magnitudes, whereas their spectral line shapes show reversed dispersive profiles, which is in an excellent agreement with our theoretical prediction. Meanwhile, we verify that the nonresonant background in PESRS mainly originates from the photothermal effect. These new insights help the proper use of PESRS for nanoscale bio-imaging and ultrasensitive detection.

Funder

National Institute of General Medical Sciences

W. M. Keck Foundation

National Institute of Allergy and Infectious Diseases

Publisher

Walter de Gruyter GmbH

Subject

Electrical and Electronic Engineering,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials,Biotechnology

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3